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Outline
• Background and motivation

• Proposal: Spiking Neural Network Acceleration via Temporal-Oriented 

Dataflow and Architecture

• Design and implementation details

• Experiment results

• Conclusion
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DNN Applications in Edge Devices

Translation
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Spiking Neural Network
SNN:
- Increasing the information density due 

to the spike train over the time window

- Sparse additions

Spiking NNFeatures

- SNNs iterate over all the neurons for each time step 
- Accumulating spikes over multiple time steps leads to more 

operations
- A larger number of time steps represent the longer

network latency.
Latency

Energy
Requirement of repeated processing spike over the time window
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The Types of SNNs

Recent studies have shown temporal-encoded SNNs 
with their inherent higher sparsity and ability to 

encode temporal information in inputs can match the 
accuracy of an ANN, even on large-scale datasets.

  

 

 

 

  

 

 

 

  

     
        

 Rate-encoded SNN:

• converts an input pixel value 

into the spike train consist of 

multiple spikes.

Temporal-encoded SNN:

• converts an input pixel value 

into the spike train consist of 

the single spike. 
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What Determines SNN Accelerator Efficiency
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Existing dataflow in SNN accelerators

Map the post-synaptic neurons calculations 
onto PEs in parallel and integrate spikes along 

the time steps in serial.

The accelerator 
processes the spikes as 
follows:

1. integrate the spikes 
at time step t;
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the time steps in serial.
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2. accumulate the 
integrated spike to the 
membrane potentials
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Existing dataflow in SNN accelerators

Map the post-synaptic neurons calculations 
onto PEs in parallel and integrate spikes along 

the time steps in serial.

The accelerator processes the 
spikes as follows:

1. integrate the spikes at 
time step t;
2. accumulate the 
integrated spike to the 
membrane potentials;
3. compare the current 
membrane potential to 
the prescribed firing 
threshold;
4. fire the output spike at 
time step t and reset the 
membrane potential if the 
potential exceeds the 
threshed.
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Existing dataflow in SNN accelerators
Limitations

The accumulation of 
membrane potential 
depends on the 
accumulated 
membrane potential 
of previous time 
steps, making SNNs 
require sequential 
computation across 
multiple time steps 
of the spike train.

- The number of cycles required to perform an inference is at least 
the number of time steps. 

- The parallelism of PE is limited by the number of neurons.

neuron-level parallelism
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Overview of Our SATO Dataflow

Decouple the chronological dependence and parallelize the integration 
of received spikes at each time step for boosting SNN efficiency. 

for t = 0 to T – 1 { : Temporal Loop
PSUM = 0;    
for n = 0 to N – 1 { : PE Loop

for m = 0 to M – 1 { : Spatial Loop
PPn,t += TSt × Wm,n; : Partial Products

}
PSUM += PPn,t; : Accumulation
if PSUM > Threshold { : Comparison

Fire the Spike of postsynaptic neuron n at 
time-step t;

}
}

}

loop 
peeling

loop 
interchange

for n = 0 to N – 1 { : Spatial Loop
for t = 0 to T – 1 { : PE Loop

for m = 0 to M – 1 { : Spatial Loop
PPt,n += TSt × Wm,n : Partial Products

}
}
{PPt,n} send to Adder Tree with Comparison;

}

Dataflow change
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Overview of Our SATO Dataflow
SATO processes the 
spikes as follows:

A. map the 
integration of spikes 
of all time steps on 
PEs without 
accumulating 
membrane potential

Expand the neuron-level parallelism to 
additional temporal-level parallelism.
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Overview of Our SATO Dataflow
SATO processes the spikes 
as follows:

B. perform spike train 
generation in a PE array, 
we orderly feed the 
integration results 
located at each time step 
to the adder tree and 
combine them with the 
binary search to 
determine the time step 
that the first fired spike. 
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Overview of Our SATO Architecture

- Performs the integration operation of received 

spikes in parallel.

- Exploit both temporal-parallelism and neuron-

level parallelism, increasing the scalability of 

the accelerator,

- Once PEs complete the integration of 

received spikes of each time step, the results 

are fed to a novel binary adder-search tree to 

generate the spike train.

In temporal-encoded SNN, the spike train only has a single 
spike, which can be realized by adopting binary search 
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Overview of Our SATO Architecture

Balancing workloads among PEs- Designs a workload dispatch strategy and 

exploits the inherent sparsity of the spike 

train and the data locality to optimize the 

workload and overhead of the PEs.
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Overview of Our SATO Architecture
BSD design as follows:

Step 1: load the input 
by rows into the input 
register and conduct 
the count for each row 
(i.e., counting the `1' at 
each time steps)

Bucket-Sort Based Dispatcher (BSD) is the 
key to balance the workload among PEs 

and maximize the data locality. 
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Overview of Our SATO Architecture
BSD design as follows:

Step 2: map the 
workload to PE based 
on the number of 
spikes processed by PE 
and save results into 
the PE register

Bucket-Sort Based Dispatcher (BSD) is the 
key to balance the workload among PEs 

and maximize the data locality. 
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Overview of Our SATO Architecture
BSD design as follows:

Step 3: calculate the 
number of extra spikes 
when inserting PE into 
the group with logic 
AND operation and 
generate a group PE 
table stored in the 
register

Bucket-Sort Based Dispatcher (BSD) is the 
key to balance the workload among PEs 

and maximize the data locality. 
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Overview of Our SATO Architecture

- Step 3: calculate the number of extra spikes when 

inserting PE into the group with logic AND operation and 

generate a group PE table stored in the register
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Overview of Our SATO Architecture

Binary adder-search 
tree is responsible for 
processing the results 
from the PE array and 
generating the spike 
train. 
We can determine the 
position of a unique 
spike in the spike train 
by binary search. 
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Experiment Results — Energy

Compared to Eyeriss, S2N2 and 
SpinalFlow, SATO consumes 91.3% ,83.4% 
and 69.7% less energy, respectively. 
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Experiment Results — Performance

Compared to Eyeriss, S2N2 and 
SpinalFlow, SATO consumes 91.3% ,83.4% 
and 69.7% less energy, respectively. 
Compared with Eyeriss, S2N2, and 
SpinalFlow, SATO achieves an average 
30.9×, 22.1×, and 6.4× performance 
improvement 
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Experiment Results — PEs

The number of time steps is generally much greater than 
128, so the number of PEs is related to performance gains 
and energy consumption. 
As the number of PEs increases, we calculate more time 
steps in parallel to obtain more performance benefits. 
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Experiment Results — time steps

As the number of time steps increases, the accuracy of the 
SNN increases, and the performance gains of SATO are also 
improving. 
For the SNN with 16 time steps, compared to SpinaFlow, 
SATO consumes nearly 70% less energy. 
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Conclusion

A novel redesign of the SNN dataflow 

• Decouple the chronological dependence

• Parallelize the integration of received spikes at each time step

An efficient SNN architecture

• workload allocation strategy

• Bucket-Sort Based Dispatcher

• Binary adder-search tree

Keep high energy efficiency while gaining large performance 

improvement
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